资源类型

期刊论文 102

会议视频 1

年份

2023 16

2022 8

2021 7

2020 10

2019 2

2018 8

2017 4

2016 9

2015 5

2014 6

2013 1

2012 8

2011 2

2010 2

2009 3

2008 2

2007 4

2006 1

2003 1

2001 1

展开 ︾

关键词

中药 1

五唑 1

代谢组学 1

催化裂化 1

光催化氧化 1

分子对接 1

可持续发展 1

合成 1

吸附-生物膜理论 1

土壤 1

多环芳烃 1

小分子 1

工业应用试验 1

异构烷烃 1

挥发性有机物 1

旅客机座舱 1

有效性 1

杀线虫活性 1

杀菌活性 1

展开 ︾

检索范围:

排序: 展示方式:

Zinc modification of Ni-Ti as efficient NiZnTi catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 461-474 doi: 10.1007/s11705-021-2072-8

摘要: The catalytic hydrogenation of nitroaromatics is an environmentally friendly technology for aniline production, and it is crucial to develop noble-metal-free catalysts that can achieve chemoselective hydrogenation of nitroaromatics under mild reaction conditions. In this work, zinc-modified Ni-Ti catalysts (NixZnyTi1) were fabricated and applied for the hydrogenation of nitroaromatics hydrogenation. It was found that the introduction of zinc effectively increases the surface Ni density, enhances the electronic effect, and improves the interaction between Ni and TiO2, resulting in smaller Ni particle size, more oxygen vacancies, higher dispersion and greater concentration of Ni on the catalyst surface. Furthermore, the electron-rich Niδ obtained by electron transfer from Zn and Ti to Ni effectively adsorbs and dissociates hydrogen. The results reveal that NixZnyTi1 (Ni0.5Zn0.5Ti1) shows excellent catalytic performance under mild conditions (70 °C and 6 bar). These findings provide a rational strategy for the development of highly active non-noble-metal hydrogenation catalysts.

关键词: bimetal strategy     oxygen vacancy     non-noble metal catalyst     hydrogenation     aromatic nitro compounds    

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 293-304 doi: 10.1007/s11783-013-0561-9

摘要: This study evaluated the effectiveness of different amendments—including a commercial NPK fertilizer, a humic substance (HS), an organic industrial waste (NovoGro), and a yeast-bacteria consortium—in the remediation of highly contaminated (up to 6% of total petroleum hydrocarbons) oilfield soils. The concentrations of hydrocarbon, soil toxicity, physicochemical properties of the soil, microbial population numbers, enzyme activities and microbial community structures were examined during the 90-d incubation. The results showed that the greatest degradation of total petroleum hydrocarbons (TPH) was observed with the biostimulation using mixture of NPK, HS and NovoGro, a treatment scheme that enhanced both dehydrogenase and lipase activities in soil. Introduction of exogenous hydrocarbon-degrading bacteria (in addition to biostimulation with NPK, HS and NovoGro) had negligible effect on the removal of TPH, which was likely due to the competition between exogenous and autochthonous microorganisms. Nonetheless, the addition of exogenous yeast-bacteria consortium significantly enhanced the removal of the aromatic fraction of the petroleum hydrocarbons, thus detoxifying the soil. The effect of bioaugmentation on the removal of more recalcitrant petroleum hydrocarbon fraction was likely due to the synergistic effect of bacteria and fungi.

关键词: bioremediation     petroleum hydrocarbon     biostimulation     bioaugmentation    

Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water: Experimental

Muhammad Farooq Saleem Khan, Jing Wu, Cheng Cheng, Mona Akbar, Chuanyang Liu, Bo Liu, Jian Shen, Yu Xin

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1219-z

摘要: The fluorescence peak location of 14 compounds interpreted at protein-like region. The p-electron system inside aromatic ring contributes to the fluorophore region. Functional group variation effects the emission spectra. Decrease in quantum yield and increase in DE is due to atomic weight F>Cl>Br>I. Theoretically results are in line with experimental ones. Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health. The fluorescence excitation-emission matrix (EEMs) spectrophotometry is a useful method to identify organic pollutants in water. This study provides a detailed insight into the fluorescence properties of the 14 selected toxic single-ring aromatic compounds by experimental and theoretical analysis. The theoretical analysis were done with Time-Dependent Density Functional Theory (TD-DFT) and B3LYP/6-31G (d,p) basis set, whereas, Polarizable Continuum Model (PCM) was used to consider water as solvent. The selected compounds displayed their own specific excitation-emission (Ex/Em) wavelengths region, at Ex<280 nm and Em<340 nm, respectively. Whereas the theoretical Ex/Em was observed as, Ex at 240 nm–260 nm and Em at 255 nm–300 nm. Aniline as a strong aromatic base has longer Em (340 nm) than alkyl, carbonyl, and halogens substituted benzenes. The lone pair of electrons at amide substituent serves as a p-electron contributor into the aromatic ring, hence increasing the stability and transition energy, which results in longer emission and low quantum yield for the aniline. The fluorescence of halogenated benzenes illustrates an increase in the HOMO-LUMO energy gap and a decrease in quantum yield associated with atomic size (F>Cl>Br>I). In this study the theoretical results are in line with experimental ones. The understanding of fluorescence and photophysical properties are of great importance in the identification of these compounds in the water.

关键词: Fluorescence     Photophysical properties     Effect of the substituent     Toxic aromatic compounds    

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1801-1808 doi: 10.1007/s11705-023-2325-9

摘要: Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.

关键词: aromatics     carbon dioxide     aromatization     coupling reaction     ZSM-5 zeolite    

Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance

Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 998-1007 doi: 10.1007/s11705-020-1994-x

摘要: This work proposes a modified activated carbon support, with defects and heteroatoms (N,P-ACs) by nitrogen and phosphorus doping to load non-noble nickel to catalyze aromatic compound hydrogenation. The Ni/N,P-ACs-900 (prepared at 900 °C) showed promising catalytic activity in liquid-phase 1,5-dinitronaphthalene hydrogenation with a 1,5-diaminonaphthalene yield of 95.8% under the mild condition of 100 °C, which is comparable to the commercial Pd/C catalyst. The nitrogen species were burned off at 900 °C, causing more defects for nickel metal loading, facilitating the interaction between the supports and the nickel metal, and resulting in highly dispersed metal particles. The computational study of the nickel binding energy has been conducted using density functional theory. It exhibits that the defects formed by heteroatom doping are beneficial to nickel anchoring and deposition to form highly uniform nickel particles. The phosphorus species in combination with the defects are suitable for H adsorption and dissociation. These results reveal that the heteroatomic doping on the active carbon shows significant effects in the hydrogenation of the liquid-phase aromatic compounds. These findings could provide a promising route for the rational design of aromatic compound hydrogenation catalysts to significantly decrease the cost by instead using noble metal catalysts in the industry.

关键词: nitrogen and phosphorus doping     non-noble nickel catalyst     aromatic compounds hydrogenation    

Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic

XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 441-450 doi: 10.1007/s11783-013-0572-6

摘要: Application of Probabilistic Risk Assessment (PRA) and Deterministic Risk Assessment (DRA) at a coking plant site was compared. By DRA, Hazard Quotient (HQ) following exposure to Naphthalene (Nap) and Incremental Life Cancer Risk (ILCR) following exposure to Benzo(a)pyrene (Bap) were 1.87 and 2.12 × 10 . PRA revealed valuable information regarding the possible distribution of risk, and risk estimates of DRA located at the 99.59th and 99.76th percentiles in the risk outputs of PRA, which indicated that DRA overestimated the risk. Cleanup levels corresponding acceptable HQ level of 1 and ILCR level of 10 were also calculated for both DRA and PRA. Nap and Bap cleanup levels were 192.85 and 0.14 mg·kg by DRA, which would result in only 0.25% and 0.06% of the exposed population to have a risk higher than the acceptable risk, according to the outputs of PRA. The application of PRA on cleanup levels derivation would lift the cleanup levels 1.9 times for Nap and 2.4 times for Bap than which derived by DRA. For this coking plant site, the remediation scale and cost will be reduced in a large portion once the method of PRA is used. Sensitivity analysis was done by calculating the contribution to variance for each exposure parameter and it was found that contaminant concentration in the soil ( ), exposure duration ( ), total hours spent outdoor per day ( ), soil ingestion rate ( ), the air breathing rate ( ) and bodyweight ( ) were the most important parameters for risk and cleanup levels calculations.

关键词: Probabilistic Risk Assessment (PRA)     a coking plant     risk     cleanup level     sensitivity analysis     polycyclic aromatic hydrocarbons (PAHs)    

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1618-z

摘要:

● Recent advances in the electrochemical decontamination of PFAS are reviewed.

关键词: Perfluorinated compounds     Electrochemical approach     Working mechanisms     Impacting factor     Coupled process    

Migration and fate of polycyclic aromatic hydrocarbons in bioretention systems with different media:

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1802-9

摘要:

● Bioretention systems showed > 92% load reduction rates of PAHs.

关键词: Bioretention     Polycyclic aromatic hydrocarbons     HYDRUS-1D     Model simulation     Migration    

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 784-792 doi: 10.1007/s11783-015-0790-1

摘要: Co-existing organic compounds may affect the adsorption of perfluorinated compounds (PFCs) and carbon nanotubes in aquatic environments. Adsorption of perfluorooctane sulfonate (PFOS), perfluorooctane acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFH S) on the pristine multi-walled carbon nanotubes (MWCNTs-Pri), carboxyl functionalized MWCNTs (MWCTNs-COOH), and hydroxyl functionalized MWCNTs (MWCNTs-OH) in the presence of humic acid, 1-naphthol, phenol, and benzoic acid was studied. Adsorption kinetics of PFOS was described well by the pseudo-second-order model and the sorption equilibrium was almost reached within 24 h. The effect of co-existing organic compounds on PFOS adsorption followed the decreasing order of humic acid>1-naphthol>benzoic acid>phenol. Adsorbed amounts of PFOS decreased significantly in the presence of co-existing or preloaded humic acid, and both adsorption energy and effective adsorption sites on the three MWCNTs decreased, resulting in the decrease of PFOS adsorption. With increasing pH, PFOS removal by three MWCNTs decreased in the presence of humic acid and phenol. The adsorbed amounts of different PFCs on the MWCNTs increased in the order of PFBS

关键词: perfluorinated compounds     carbon nanotubes     competitive adsorption     humic acid     perfluorooctane sulfonate (PFOS)    

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 73-84 doi: 10.1007/s11783-014-0743-0

摘要: Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters for VOCs and diffusive samplers for carbonyl compounds were deployed for 24 h at each site, and 94 compounds were quantified. Formaldehyde, acetone and acetaldehyde were the most abundant carbonyl compounds both indoors and outdoors with indoor median concentrations being 32.1, 21.7 and 15.3 μg·m , respectively. Ethane (17.6 μg·m ), toluene (14.4 μg·m ), propane (11.2 μg·m ), ethene (8.40 μg·m ), n-butane (6.87 μg·m ), and benzene (5.95 μg·m ) showed the high median concentrations in indoor air. Dichloromethane, p-dichlorobenzene (p-DCB) and toluene exhibited extremely high levels in some residences, which were related with a number of indoor emission sources. Moreover, isoprene, p-dichlorobenzene and carbonyls showed median indoor/outdoor (I/O) ratios larger than 3, indicating their indoor sources were prevailing. Chlorinated compounds like CFCs were mainly from outdoor sources for their I/O ratios being less than 1. In addition, indoor concentrations between two sampling seasons varied with different compounds. Carbonyl compounds and some chlorinated compounds had higher concentrations in the non-heating season, while alkanes, alkenes, aromatic compounds showed an increase in the heating season. Indoor concentration of VOCs and carbonyls were influenced by locations, interior decorations and indoor activities, however the specific sources for indoor VOCs and carbonyls could not be easily identified. The findings obtained in this study would significantly enhance our understandings on the prevalent and abundant species of VOCs as well as their concentrations and sources in Beijing residences.

关键词: indoor air     Volatile organic compounds (VOCs)     residence     carbonyl compounds    

Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 817-829 doi: 10.1007/s11705-022-2254-z

摘要: Amino acids are important nitrogen-containing chemicals that have a variety of applications. Currently, fermentation is the widely employed method to produce amino acids; however, the products are mostly limited to natural amino acids in the L-configuration. Catalytic synthesis is an alternative approach for the synthesis of amino acids with different types and configurations, where the use of renewable biomass-based feedstocks is highly attractive. To date, several lignocellulose and triacylglycerol-derived intermediates, typically α-keto acids and α-hydroxyl acids, have been transformed into amino acids via the amination reaction in the presence of additional nitrogen sources (i.e., NH3·H2O). Making full use of inherent nitrogen in biomass (i.e., chitin and protein) to produce amino acids avoids the use of extra nitrogen sources and meets the requirements of green chemistry, which is attracting increasing attention. In this review, we summarize different chemical-catalytic systems for the transformation of biomass to amino acids. An outlook on the challenges and opportunities for more effective production of amino acids from biomass by catalytic methods is provided.

关键词: biomass     amino acids     chitin     nitrogen-containing compounds     lignocellulose    

Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons

Xiangyu LI, Lu SU, Yujue WANG, Yanqing YU, Chengwen WANG, Xiaoliang LI, Zhihua WANG

《环境科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 295-303 doi: 10.1007/s11783-012-0410-2

摘要: Catalytic fast pyrolysis (CFP) of Kraft lignins with HZSM-5 zeolite for producing aromatics was investigated using analytical pyrolysis methods. Two Kraft lignins were fast pyrolyzed in the absence and presence of HZSM-5 in a Curie-point pyrolyzer. Without the catalyst, fast pyrolysis of lignin predominantly produced phenols and guaiacols that were derived from the subunits of lignin. However, the presence of HZSM-5 changed the product distribution dramatically. As the SiO /Al O ratio of HZSM-5 decreased from 200 to 25 and the catalyst-to-lignin ratio increased from 1 to 20, the lignin-derived oxygenates progressively decreased to trace and the aromatics increased substantially. The aromatic yield increased considerably as the pyrolysis temperature increased from 500°C to 650°C, but then decreased with yet further increase of pyrolysis temperature. Under optimal reaction conditions, the aromatic yields were 2.0 wt.% and 5.2 wt.% for the two lignins that had effective hydrogen indexes of 0.08 and 0.35.

关键词: lignin     catalytic fast pyrolysis     HZSM-5     zeolite     aromatic hydrocarbon    

Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1610-7

摘要:

● Compositional patterns of PAHs in dust aerosol vary from soil during dust generation.

关键词: Dust aerosols     Enrichment factors (EFs)     Polycyclic aromatic hydrocarbons (PAHs)    

Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ protein

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1615-2

摘要:

● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42.

关键词: Polycyclic aromatic hydrocarbons     Nicotine     toxicology     42 peptide     Alzheimer’s disease     Molecular dynamics simulations     Environmental pollution    

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1252-y

摘要: Abstract • Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., •OH and •O2−). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.

关键词: Humic substance     Polycyclic aromatic hydrocarbons (PAHs)     Persistent free radicals (PFRs)     Redox     Reactive oxygen species (ROS)    

标题 作者 时间 类型 操作

Zinc modification of Ni-Ti as efficient NiZnTi catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics

期刊论文

Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds

Jun QIAO, Chengdong ZHANG, Shuiming LUO, Wei CHEN

期刊论文

Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water: Experimental

Muhammad Farooq Saleem Khan, Jing Wu, Cheng Cheng, Mona Akbar, Chuanyang Liu, Bo Liu, Jian Shen, Yu Xin

期刊论文

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

期刊论文

Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance

Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo

期刊论文

Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic

XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing

期刊论文

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

期刊论文

Migration and fate of polycyclic aromatic hydrocarbons in bioretention systems with different media:

期刊论文

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU

期刊论文

Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China

Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU

期刊论文

Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives

期刊论文

Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons

Xiangyu LI, Lu SU, Yujue WANG, Yanqing YU, Chengwen WANG, Xiaoliang LI, Zhihua WANG

期刊论文

Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from

期刊论文

Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ protein

期刊论文

Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic

Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma

期刊论文